2,780 research outputs found

    Autoplot: A browser for scientific data on the web

    Full text link
    Autoplot is software developed for the Virtual Observatories in Heliophysics to provide intelligent and automated plotting capabilities for many typical data products that are stored in a variety of file formats or databases. Autoplot has proven to be a flexible tool for exploring, accessing, and viewing data resources as typically found on the web, usually in the form of a directory containing data files with multiple parameters contained in each file. Data from a data source is abstracted into a common internal data model called QDataSet. Autoplot is built from individually useful components, and can be extended and reused to create specialized data handling and analysis applications and is being used in a variety of science visualization and analysis applications. Although originally developed for viewing heliophysics-related time series and spectrograms, its flexible and generic data representation model makes it potentially useful for the Earth sciences.Comment: 16 page

    Chiral Quark Model

    Get PDF
    In this talk I review studies of hadron properties in bosonized chiral quark models for the quark flavor dynamics. Mesons are constructed from Bethe--Salpeter equations and baryons emerge as chiral solitons. Such models require regularization and I show that the two--fold Pauli--Villars regularization scheme not only fully regularizes the effective action but also leads the scaling laws for structure functions. For the nucleon structure functions the present approach serves to determine the regularization prescription for structure functions whose leading moments are not given by matrix elements of local operators. Some numerical results are presented for the spin structure functions.Comment: Talk presented at the workshop QCD 2002, IIT Kanpur, Nov. 2002, 10 pages, proceedings style files include

    Interpretation of F106B and CV580 in-flight lightning data and form factor determination

    Get PDF
    Two topics of in-flight aircraft/lightning interaction are addressed. The first is the analysis of measured data from the NASA F106B Thunderstorm Research Aircraft and the CV580 research program run by the FAA and Wright-Patterson Air Force Base. The CV580 data was investigated in a mostly qualitative sense, while the F106B data was subjected to both statistical and quantitative analysis using linear triggered lightning finite difference models. The second main topic is the analysis of field mill data and the calibration of the field mill systems. The calibration of the F106B field mill system was investigated using an improved finite difference model of the aircraft having a spatial resolution of one-quarter meter. The calibration was applied to measured field mill data acquired during the 1985 thunderstorm season. The experimental determination of form factors useful for field mill calibration was also investigated both experimentally and analytically. The experimental effort involved the use of conducting scale models and an electrolytic tank. An analytic technique was developed to aid in the understanding of the experimental results

    Melting of hexagonal skyrmion states in chiral magnets

    Get PDF
    Skyrmions are spiral structures observed in thin films of certain magnetic materials (Uchida et al 2006 Science 311 359–61). Of the phases allowed by the crystalline symmetries of these materials (Yi et al 2009 Phys. Rev. B 80 054416), only the hexagonally packed phases (SCh) have been observed. Here the melting of the SCh phase is investigated using Monte Carlo simulations. In addition to the usual measure of skyrmion density, chiral charge, a morphological measure is considered. In doing so it is shown that the low-temperature reduction in chiral charge is associated with a change in skyrmion profiles rather than skyrmion destruction. At higher temperatures, the loss of six-fold symmetry is associated with the appearance of elongated skyrmions that disrupt the hexagonal packing

    Substorm classification with the WINDMI model

    No full text
    International audienceThe results of a genetic algorithm optimization of the WINDMI model using the Blanchard-McPherron substorm data set is presented. A key result from the large-scale computations used to search for convergence in the predictions over the database is the finding that there are three distinct types of vx Bs -AL waveforms characterizing substorms. Type I and III substorms are given by the internally-triggered WINDMI model. The analysis reveals an additional type of event, called a type II substorm, that requires an external trigger as in the northward turning of the IMF model of Lyons (1995). We show that incorporating an external trigger, initiated by a fast northward turning of the IMF, into WINDMI, a low-dimensional model of substorms, yields improved predictions of substorm evolution in terms of the AL index. Intrinsic database uncertainties in the timing between the ground-based AL electrojet signal and the arrival time at the magnetopause of the IMF data measured by spacecraft in the solar wind prevent a sharp division between type I and II events. However, within these timing limitations we find that the fraction of events is roughly 40% type I, 40% type II, and 20% type III

    A new BIST scheme for low-power and high-resolution DAC testing

    Get PDF
    A BIST scheme for testing on chip DAC is presented in this paper. We discuss the generation of on chip testing stimuli and the measurement of digital signals with a narrow-band digital filter. We validate the scheme with software simulation and point out the possibility of ADC BIST with verified DACicus-journals

    Instability of the hedgehog shape for the octet baryon in the chiral quark soliton model

    Full text link
    In this paper the stability of the hedgehog shape of the chiral soliton is studied for the octet baryon with the SU(3) chiral quark soliton model. The strangeness degrees of freedom are treated by a simplified bound-state approach, which omits the locality of the kaon wave function. The mean field approximation for the flavor rotation is applied to the model. The classical soliton changes shape according to the strangeness. The baryon appears as a rotational band of the combined system of the deformed soliton and the kaon.Comment: 24 pages, LaTeX, 8 eps file

    Parton distributions in the chiral quark model: a continuum computation

    Get PDF
    We compute the parton distributions for the chiral quark model. We present a new technique for performing such computations based on Green functions. This approach avoids a discretization of the spectrum. It therefore does not need any smoothing procedures. The results are similar to those of other groups, however the distributions peak at smaller xx.Comment: 19 pages, 8 Figures, LaTeX, some typos corrected, some additional comments in the conclusion
    • …
    corecore